quinta-feira, 20 de outubro de 2011

ATIVIDADE BACTERICIDA DE 21 ÓLEOS ESSENCIAIS COMPROVADA CIENTIFICAMENTE (artigo em inglês)

ATIVIDADE ANTIBACTERICIDA DE 21 ÓLEOS ESSENCIAIS COMPROVADA CIENTIFICAMENTE (artigo em inglês)



 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecomm ons.org/licenses /by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.)

 
In vitro antibacterial activity of some plant essential oils
Seenivasan Prabuseenivasan,1 Manickkam Jayakumar,1 and Savarimuthu Ignacimuthu 1
1Entomology Research Institute, Loyola College, Chennai – 600 034, India.
Corresponding author.
Seenivasan Prabuseenivasan: prabsri@gmail. com ; Manickkam Jayakumar: jaismohai@gmail. com ; Savarimuthu Ignacimuthu: eri_lc@hotmail. com
Received July 29, 2006; Accepted November 30, 2006.

Background:
To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species.
Methods:
The selected essential oils were screened against four gram-negative bacteria (Escherichia coliKlebsiella pneumoniaePseudomonas aeruginosaProteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml.
Results:
Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity.
Conclusion:
Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents.
The spread of drug resistant pathogens is one of the most serious threats to successful treatment of microbial diseases. Down the ages essential oils and other extracts of plants have evoked interest as sources of natural products. They have been screened for their potential uses as alternative remedies for the treatment of many infectious diseases [1]. World Health Organization (WHO) noted that majority of the world's population depends on traditional medicine for primary healthcare. Medicinal and aromatic plants which are widely used as medicine and constitute a major source of natural organic compounds.
Essential oils have been shown to possess antibacterial, antifungal, antiviral insecticidal and antioxidant properties [2,3]. Some oils have been used in cancer treatment [4]. Some other oils have been used in food preservation [5], aromatherapy [6] and fragrance industries [7]. Essential oils are a rich source of biologically active compounds. There has been an increased interest in looking at antimicrobial properties of extracts from aromatic plants particularly essential oils [8]. Therefore, it is reasonable to expect a variety of plant compounds in these oils with specific as well as general antimicrobial activity and antibiotic potential [9].
Essential oils (also called volatile oils) are aromatic oily liquids obtained from plant materials (flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits and roots). They can be obtained by expression, fermentation or extraction but the method of steam distillation is most commonly used for commercial production. An estimated 3000 essential oils are known, of which 300 are commercially important in fragrance market [7]. Essential oils are complex mixers comprising many single compounds. Chemically they are derived from terpenes and their oxygenated compounds. Each of these constituents contributes to the beneficial or adverse effects.
Essential oils such as aniseed, calamus, camphor, cedarwood, cinnamon, citronella, clove, eucalyptus, geranium, lavender, lemon, lemongrass, lime, mint, nutmeg, orange, palmarosa, rosemary, basil, vetiver and wintergreen have been traditionally used by people for various purposes in different parts of the world (Table 1). Cinnamon, clove and rosemary oils had shown antibacterial and antifungal activity [10]; cinnamon oil also possesses antidiabetic property [11]. Anti-inflammatory activity has been found in basil [12]. Lemon and rosemary oils possess antioxidant property [13,14]. Peppermint and orange oils have shown anticancer activity [15,16]. Citronella oil has shown inhibitory effect on biodegrading and storage-contaminati ng fungi [17]. Lime oil has shown immunomodulatory effect in humans [16]. Lavender oil has shown antibacterial and antifungal activity; it was also found to be effective to treat burns and insect bites [18].
Table 1
List of selected essential oils and their properties.
Common name
Botanical name (Family)
Properties [37, 42, 43]
Aniseed oil
Carminative, stimulant, expectorant, condiment and flavouring agent.
Calamus oil
Carminative, bitter stimulant, vermifuge and insect repellent
Camphor oil
Cinnamomuum camphora(Lauraceae)
Rubefacient, tooth powder and cosmetic agent.
Cedarwood oil
Cedrus atlantica (Coniferae)
Antiseptic, astringent, diuretic, fungicidal, sedative and stimulant.
Cinnamon oil
Carminative, stomachic, astringent, stimulant and antiseptic.
Perfumery, mosquito repellent and flavouring agent.
Clove oil
Eugenia caryophyllus(Myrtaceae)
Dental analgesic, carminative, stimulant and antiseptic.
Eucalyptus oil
Eucalyptus globulus (Myrtaceae)
Counter-irritant, antiseptic, expectorant, cough reliever.
Flavouring agent and stimulant.
Lavender oil
Stimulant and flavouring agent.
Lemon oil
Carminative, stimulant, perfuming and flavouring agent.
Lemongrass oil
Flavouring agent, antiseptic and deodorant.
Lime oil
Stomachic, carminative and flavouring agent.
Nutmeg oil
Stimulant, anti rheumatic and carminative.
Orange oil
Stomachic, carminative and flavouring agent.
Palmarosa oil
Cymbopogon martini(Graminae)
Cosmetic, anti rheumatism and insect repellent.
Peppermint oil
Digestent, stimulant and tonic.
Rosemary oil
Carminative, stimulant and flavouring agent.
Basil oil
Antibacterial, insecticidal, stimulant, stomachic and diaphoretic.
Vetiver oil
Stimulant, refrigerant, flavouring agent, stomachic and fixative.
In spite of all the information available on the 21 oils selected for this study, we were not able to find antibacterial activity for all those oils. Hence this study was undertaken with the intention of finding out the efficacy of these essential oils as antimicrobial agents for commercial purposes.
Methods
Essential oils
Twenty-one essential oils obtained from Tegraj & Co (P) Ltd, India (commercial producers of plant essential oils and aromatic substances) were used in this study (Table 1). These oils were selected based on literature survey and their use in traditional medicine. Quality of the oils was ascertained to be more than 98% pure.
Test organism
Microorganisms were obtained from the Department of Microbiology, Christian Medical College, Vellore, India and Institute of Basic Medical Sciences (IBMS), Chennai, India. Four strains of gram-negative bacteria [Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 15380), Pseudomonas aeruginosa (ATCC 27853), Proteus vulgaris (MTCC 1771)] and two strains of gram-positive bacteria [Bacillus subtilis (MTCC 441) and Staphylococcus aureus (ATCC 25923)] were used. The cultures of bacteria were maintained in their appropriate agar slants at 4°C throughout the study and used as stock cultures.
Antibacterial assay
Screening of essential oils for antibacterial activity was done by the disk diffusion method, which is normally used as a preliminary check and to select between efficient essential oils [2]. It was performed using an 18 h culture at 37°C in 10 ml of Mueller Hinton Broth. The cultures were adjusted to approximately 105CFU/ml with sterile saline solution. Five hundred microliters of the suspensions were spread over the plates containing Mueller-Hinton agar using a sterile cotton swab in order to get a uniform microbial growth on both control and test plates. The essential oils were dissolved in 10% aqueous dimethylsulfoxide (DMSO) with Tween 80 (0.5% v/v for easy diffusion) and sterilized by filtration through a 0.45 μm membrane filter. Under aseptic conditions, empty sterilized discs (Whatman no. 5, 6 mm dia) were impregnated with 50 μL of different concentrations (1:1, 1:5, 1:10, 1:20) of the respective essential oils and placed on the agar surface [19]. Paper disc moistened with aqueous DMSO was placed on the seeded petriplate as a vehicle control. A standard disc containing streptomycin (25 μg/disc) was used as reference control. All petridishes were sealed with sterile laboratory parafilm to avoid eventual evaporation of the test samples. The plates were left for 30 min at room temperature to allow the diffusion of oil, and then they were incubated at 37°C for 18 h (18 h was fixed as the optimum since there was no change in the inhibition up to 24 h) After the incubation period, the zone of inhibition was measured with a calliper. Studies were performed in triplicate, and mean value was calculated. The means were analysed by one way analysis of variance (ANOVA) followed by Tukey's post hoc multiple comparison test using SPSS software package version 13.0 for windows. The results were expressed as mean ± SD. values <0.05 were considered as significant.
MIC assay
Based on the previous screening seven essential oils (Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils) were identified to have potent antibacterial activity and their Minimum Inhibitory Concentrations (MIC) were determined. The agar dilution method recommended by the National Committee for Clinical Laboratory Standards [20] was used with the following modification; a final concentration of 0.5% (v/v) Tween-20 (Sigma) was incorporated into the agar medium to enhance oil solubility. A series of two fold dilution of each oil, ranging from 0.2 to 25.6 mg/ml, was prepared in Muellur Hinton agar at 48°C. Plates were dried at room temperature for 30 min prior to spot inoculation with 3 μl aliquots of culture containing approximately 10CFU/ml of each organism. Inoculated plates were incubated at 37°C for 18 h and the MIC was determined. Experiments were carried out in triplicate. Inhibition of bacterial growth in the plates containing test oil was judged by comparison with growth in blank control plates. The MICs were determined as the lowest concentration of oil inhibiting visible growth of each organism on the agar plate [21].
Gas chromatography mass spectrometry (GC/MS)
The most potent oil, (cinnamon oil) was analysed using GC/MS (Shimadzu capillary GC-quadrupole MS system QP 5000) with two fused silica capillary column DB-5 (30 μm, 0.25 mm i.d, film thickness 0.25 μm) and a flame ionization detector (FID) which was operated in EI mode at 70 eV. Injector and detector temperatures were set at 220°C and 250°C, respectively. One microliter essential oil solution in hexane was injected and analyzed with the column held initially at 60°C for 2 min and then increased by 3°C/min up to 300°C. Helium was employed as carrier gas (1 ml/min). The relative amount of individual components of the total oil is expressed as percentage peak area relative to total peak area. Qualitative identification of the different constituents was performed by comparison of their relative retention times and mass spectra with those of authentic reference compounds, or by retention indices (RI) and mass spectra.
Results
Table 2
Antimicrobial activity of 21 essential oils against S. aureus, B. subtilis and K. pneumoniae using disc diffusion method
Oil Name
S. aureus
B. subtilis
K. pneumoniae
Concentration
1:1
1:5
1:10
1:20
1:1
1:5
1:10
1:20
1:1
1:5
1:10
1:20

 
Aniseed oil
-
-
-
-
12.1 ± 1.0klm
10.8 ± 0.2ij
-
-
-
-
-
-
Calamus oil
-
-
-
-
17.9 ± 0.9def
14.7 ± 0.5cd
12.6 ± 0.5 c
11.3 ± 1.2d
-
-
-
-
Camphor oil
-
-
-
-
-
-
-
-
8.5 ± 0.5e
-
-
-
Cedar wood
-
-
-
-
13.4 ± 0.5jkl
12.2 ± 0.5ghi
99 ± 0fg
-
-
-
-
-
Cinnamon oil
20.8 ± 0.5 a
18.7 ± 0.2a
14.8 ± 0.2b
13.7 ± 0.28b
29.9 ± 0.7 a
27.8 ± 1.1 a
24.1 ± 1.1 a
22.8 ± 0.2b
27.5 ± 0.5a
23.5 ± 0.5a
20.9 ± 0.2a
18.6 ± 0.5a
15.8 ± 0.3bc
10.3 ± 0.5de
-
-
14.6 ± 0.5ij
12.5 ± 0.5ghi
10.3 ± 0.5de
9.3 ± 0.5ef
-
-
-
-
Clove oil
16.3 ± 0.5 b
14.0 ± 0bc
8.1 ± 1.1d
9.8 ± 0.57c
14.5 ± 0.2hij
13.1 ± 0.2ef
10.1 ± 1.0def
8.9 ± 0.2f
16.2 ± 0.5c
14.4 ± 0.5b
8.4 ± 0.5c
-
Eucalyptus oil
-
-
-
-
-
-
-
-
-
-
-
-
10.4 ± 0.5e
8.9 ± 0.2e
-
-
17.2 ± 0.2defg
14.7 ± 0.5cde
-
-
10.8 ± 0.2d
9 ± 0c
-
-
Lavender
-
-
-
-
12.5 ± 0.4jk
11.1 ± 0.2hi
-
-
-
-
-
-
Lemon oil
17.5 ± 1.1b
14.5 ± 0.2b
8.3 ± 0.2d
-
16.9 ± 0.2efgh
14.5 ± 0.5cdef
8.9 ± 0.5 g
-
16.5 ± 0.5c
15.3 ± 1.1b
8.7 ± 0.5c
-
Lemongrass oil
11.4 ± 1.0 de
8.9 ± 0.2e
-
-
16.7 ± 0.5fghi
15.1 ± 0.7 c
8.9 ± 1.0fg
-
8.3 ± 0.5e
-
-
-
Lime oil
14.2 ± 0.5cd
12.7 ± .2bcd
10.3 ± 0.
9 ± 0.00c
23.9 ± 1.1 c
20.8 ± 0.7 b
15.8 ± 0.2 b
14.1 ± 1.1c
16.1 ± 1.1c
14.6 ± 0.5b
12.9 ± 0.5b
12.6 ± 0.5b
Nutmeg
11.7 ± 0.8de
9.1 ± 0.2e
-
-
11.5 ± 0.5mn
10.9 ± 0.2hij
-
-
-
-
-
-
Orange oil
12.8 ± 0.2cd
10.6 ± 0.2cde
-
-
18.6 ± 0.8de
15.7 ± 1.2 c
9.4 ± 0.5efg
10.6 ± .5e
11.9 ± 0.7d
9.31.1c
-
-
Palmarosa oil
12.5 ± 0.2cd
10.9 ± 0.5de
8 ± 0d
-
15.4 ± 0.5ghi
14.2 ± 1cdef
12.5 ± 0.4 c
11.3 ± 0.5d
-
-
-
-
Peppermint oil
8.1 ± 0.5f
-
-
-
10.6 ± 0.5mn
8.6 ± 0.4k
-
-
-
-
-
-
Rosemary oil
12.5 ± 1d
10.6 ± 1.0e
8.6 ± 0.2d
-
14.7 ± 1hi
12.8 ± 0.5efg
11.2 ± 0.5cd
8.9 ± 0.2f
11.9 ± 0.5d
9.9 ± 0.7c
-
-
Basil oil
10.3 ± 0.5e
8.3 ± 0.5e
-
-
-
-
-
-
-
-
-
-
Vetiver oil
-
-
-
-
18.9 ± 0.9 d
15.6 ± 0.5c
12.8 ± 0.2 c
11.6 ± 0.7d
-
-
-
-
Wintergreen
8.7 ± 0.51f
-
-
-
9.9 ± 0.5 n
9.1 ± 0.1jk
-
-
-
-
-
-
Streptomycin* *
20.9 ± 0.5
 
 
 
26.9 ± 0.5
 
 
 
20.9 ± 0.9
 
 
 
Vehicle control
-
 
 
 
-
 
 
 
-
 
 
 
** Streptomycin disc (25 μg) as a positive reference standard; Values are mean inhibition zone (mm) ± S.D of three replicates
Table 3
Antimicrobial activity of 21 essential oils against P. vulgaris, P. aeruginosa and E. coli using disc diffusion method
Oil Name
P. vulgaris
P. aeruginosa
E. coli
Concentration
1:1
1:5
1:10
1:20
1:1
1:5
1:10
1:20
1:1
1:5
1:10
1:20

 
Aniseed oil
-
-
-
-
-
-
-
-
-
-
-
-
Calamus oil
11.1 ± 0.7gh
9.2 ± 0.5h
-
-
13.8 ± 0.5ef
12.8 ± 0.4f
9.2 ± 0.7 d
8.3 ± 0.5 d
-
-
-
-
Camphor oil
8.8 ± 0.7 hi
-
-
-
10 ± 0.5gh
-
-
-
8.8 ± 1d
-
-
-
Cedar wood
14.1 ± 1.1f
12.9 ± 0.5g
8.2 ± 0.5f
-
15.6 ± 0.5de
14.1 ± 0.9ef
8.23 ± 0.5d
-
-
-
-
-
Cinnamon oil
29.4 ± 0.5a
27 ± 0a
18.6 ± 1.52a
14.1 ± 0.4b
33.3 ± 1.6a
32.2 ± 0.5a
24.4 ± 0.5a
21 ± 0a
29.8 ± 0.7a
26 ± 1a
23.8 ± 1a
21 ± 0.2a
19.5 ± 0.5cd
11.3 ± 0.7g
-
-
12.1 ± 0.5fg
10.4 ± 0.5g
-
-
-
-
-
-
Clove oil
20.1 ± 1c
18.2 ± 0.5d
11.8 ± 0.5d
8 ± 0e
17.4 ± 0.7d
15.5 ± 0.2e
8.5 ± 0.5d
-
17.4 ± 2c
15.1 ± 0.5c
10.8 ± 0.5e
8 ± 0c
Eucalyptus oil
-
-
-
-
-
-
-
-
8.5 ± 1d
-
-
-
19 ± 0.2de
14.6 ± 0.2e
11 ± 1.5ef
8.3 ± 0e
21.5 ± 0.2c
19.2 ± 1.2d
9.4 ± 0.5d
-
14.1 ± 1c
10.4 ± 1d
-
-
Lavender
10.8 ± 0.5ghi
9.3 ± 0.5h
-
-
12.1 ± 0.9fg
9.9 ± 0.7g
-
-
-
-
-
-
Lemon oil
22.5 ± 0.5b
18.9 ± 0.5d
15.5 ± 0.5c
10.7 ± 0.2d
21.4 ± 1.1c
19.9 ± 0.7cd
9.1 ± 0.2d
-
21.6 ± 0.5b
18.9 ± 0.5b
10.6 ± 0.2e
-
Lemongrass oil
14.6 ± 0.7f
12.1 ± 0.2g
9.5 ± 0.5ef
-
23.4 ± 1c
19.6 ± 0.5d
9.1 ± 0.5d
-
-
-
-
-
Lime oil
27.8 ± 0.5a
24 ± 0b
17.9 ± 0.1ab
13 ± 1c
25.5 ± 1b
23.5 ± 0.5b
13.6 ± 0.7c
9.3 ± 0.8c
22.7 ± 0.5b
18.9 ± 1b
15.6 ± 0.5c
17.6 ± 1.5b
Nutmeg
14.5 ± 0.7f
11.9 ± 0.2g
8 ± 0 f
-
15.5 ± 0.5de
12.9 ± 1f
-
-
-
-
-
-
Orange oil
23.7 ± 0.7b
22.2 ± 0.7 c
16.5 ± 0.2bc
10.7 ± 0.5d
21.6 ± 0.2c
18.8 ± 0.2d
9.4 ± 0.5d
-
22.9 ± 0.5b
19.4 ± 0.7b
12.4 ± 0.2d
-
Palmarosa oil
19 ± 0cd
15.8 ± 0.2 e
9.9 ± 0.2 def
-
14.4 ± 0.5ef
13.2 ± 0.5ef
9.2 ± 0.2d
-
8.2 ± 0.5d
-
-
-
Peppermint oil
8.5 ± 0.2i
-
-
-
13.4 ± .52ef
11.2 ± 0.8g
-
-
-
-
-
-
Rosemary oil
17.4 ± 1cd
15.9 ± 0.5ef
9.7 ± 0de
-
23.4 ± 0.2c
21.9 ± 0.5c
14.5 ± 0.5b
8.3 ± 0.5d
17.5 ± 1c
15.1 ± 0.7c
9.1 ± 0.2f
-
Basil oil
8.9 ± 0.7ghi
-
-
-
8.23 ± 0.5h
-
-
-
10.5 ± 0.5d
8.2 ± 0.5e
-
-
Vetiver oil
11.5 ± 0.5g
10.3 ± 0.2
11.4 ± 0.5de
-
13.5 ± 0.5ef
11.7 ± 0.5g
8.2 ± 0.2d
-
-
-
-
-
Wintergreen
15.8 ± 0.7ef
14.8 ± 0.5 f
9.5 ± 1def
-
10.2
-
-
-
8.9 ± 1d
-
-
-
Streptomycin* *
18.4 ± 0.7
 
 
 
16.4 ± 0.2
 
 
 
21.2 ± 0.1
 
 
 
Vehicle control
-
 
 
 
-
 
 
 
-
 
 
 
** Streptomycin disc (25 μg) as a positive reference standard; Values are mean inhibition zone(mm) ± S.D of three replicates
Means within a column followed by different letters are statistically significant by tukey's test at p = 0.05; - no activity.
Minimum inhibitory concentration (MIC) for selected seven oils ranged from 0.8 to 12.8 mg/ml (Table 4). This study revealed that cinnamon oil showed maximum activity with MIC values ranging from 0.8 to 3.2 mg/ml followed by clove oil with MIC values ranging from 1.6 to 6.4 mg/ml against all the tested strains where as remaining oils showed moderate MIC values.
Table 4
Minimum Inhibitory Concentration (MIC) of selected essential oils (mg/ml).
Oil name
S. aureus
B. subtilis
K. pneumoniae
P. vulgaris
P. aeruginosa
E. coli
Cinnamon oil
3.2
>1.6
3.2
>1.6
>0.8
>1.6
Clove oil
>6.4
>3.2
>6.4
>3.2
>1.6
>1.6
>12.8
>6.4
12.8
>12.8
>12.8
>6.4
Lemon oil
>12.8
>12.8
>12.8
>6.4
12.8
>6.4
Lime oil
12.8
>6.4
>6.4
>3.2
>6.4
>6.4
Orange oil
>12.8
>12.8
12.8
>6.4
>12.8
>12.8
Rosemary oil
>12.8
>6.4
>12.8
>6.4
>6.4
>6.4
GC/MS analysis of cinnamon oil identified thirty-eight phytochemicals as constituents; of these cinnamaldehyde was the major compound (52.4%) followed by Benzaldehyde (12.31%), benzoic acid (8.20%) and benzyl alcohol (2.23%). Remaining chemical compounds were in trace amounts. The major components and their retention times are summarized in Table 5.
Table 5
Major chemical compounds of cinnamon oil (GC-MS analysis)
S. No
Rt (min)
Compound
Peak Area [%]
1
7.51
Benzaldehyde
12.31
2
7.77
Benzyl alcohol
2.23
3
8.741
Cinnamaldehyde
52.42
4
9.88
Benzoic acid
8.20
5
-
Others
24.84
BMC Complement Altern Med. 2006; 6: 39.
Published online 2006 November 30. doi: 10.1186/1472- 6882-6-39.
Copyright © 2006 Prabuseenivasan et al; licensee BioMed Central Ltd.
Discussion
Plant essential oils and extracts have been used for many thousands of years [22], in food preservation, pharmaceuticals, alternative medicine and natural therapies [23,24]. It is necessary to investigate those plants scientifically which have been used in traditional medicine to improve the quality of healthcare. Essential oils are potential sources of novel antimicrobial compounds [25] especially against bacterial pathogens. In vitro studies in this work showed that the essential oils inhibited bacterial growth but their effectiveness varied. The antimicrobial activity of many essential oils has been previously reviewed and classified as strong, medium or weak [26].
In our study, cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited strong activity against the selected bacterial strains. Several studies [27,28] have shown that cinnamon, clove and rosemary oils had strong and consistent inhibitory effects against various pathogens. Even though earlier studies have reported better antimicrobial activity for eucalyptus oil [29,30] our study showed least inhibitory activity of eucalyptus in addition to aniseed and camphor oils. Among all oils analyzed in this work, the essential oil of cinnamon was the most effective as an antibacterial agent. The antibacterial activity has been attributed to the presence of some active constituents in the oils. Our GC-MS study revealed cinnamaldehyde to be the major constituent of cinnamon oil. Cinnamaldehyde was the predominant active compound found in cinnamon oil [31,32]. Earlier studies suggested that the antibacterial activity of cinnamon oil was probably due to their major component, cinnamaldehyde and their properties could be multiple. Cinnamaldehyde is a natural antioxidant and the animal studies suggest that an extract of cinnamon bark taken orally may help prevent stomach ulcer [33]. Cinnamaldehyde was completely inhibiting both sensitive and resistant stain ofHelicobacter pylori [34]. Cinnamon oil was not harmful when consumed in food products and it inhibited the growth of molds, yeast and bacteria [27]. Cinnamon extract had a regulatory role in blood glucose level and lipids and it may also exert a blood glucose-suppressing effect [35]. The use of commercial cinnamon preparation produced an improvement of oral candidiasis of HIV-infected patients [36]. Cinnamon oil is locally applied with much benefit in neuralgia and headache. As an antiseptic it is used as an injection in gonorrhea; as germicide it is used internally in typhoid fever. This oil is also used in the treatment of cancer and other microbial diseases [37]. It can be incorporated into creams, lotions, drops, etc. which are applied externally on the body to treat diseases caused by Aspergillus niger [38].
An important characteristic of essential oils and their components is their hydrophobicity, which enable them to partition the lipids of the bacterial cell membrane and mitochondria, disturbing the cell structures and rendering them more permeable [39,40]. Extensive leakage from bacterial cells or the exit of critical molecules and ions will lead to death [41]. Gram-positive bacteria were more resistant to the essential oils than gram-negative bacteria [26]. In the present study, cinnamon, lime, geranium, rosemary, orange, lemon and clove oils were found to be equally effective against both gram-positive and gram-negative organisms.
Conclusion
From this study it can be concluded that many essential oils possess antibacterial activity. Cinnamon oil has the most potential bactericidal properties. We believe that the present investigation together with previous studies provide support to the antibacterial properties of cinnamon oil. It can be used as antibacterial supplement in the developing countries towards the development of new therapeutic agents. Additional in vivo studies and clinical trials would be needed to justify and further evaluate the potential of this oil as an antibacterial agent in topical or oral applications.
Interests
The author(s) declare that they have no competing interests
Contributors
SP and MJ have carried out the experimental part such as selection of essential oils, inoculum preparation and antimicrobial evaluation. SI supervised the work, evaluated the results and corrected the manuscript for publication. All authors read and approved the final manuscript.
The pre-publication history for this paper can be accessed here:
We thank ICMR, New Delhi for providing financial support. We also thank the Department of Microbiology, Institute of Basic Medical Sciences (IBMS), University of Madras, Chennai and Christian Medical College, Vellore, India for providing the bacterial cultures. We are thankful to Mr. Sankar AGM, R & D Section, Nicholas Piramal India Limited, Chennai for helping in GC/MS analysis.
References
1.        Tepe B, Daferera D, Sokmen M, Polissiou M, Sokmen A. In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et P.H. Davis. J Agric Food Chem. 2004;52:1132–1137. [PubMed]
2.        Burt SA. Essential oils: their antibacterial properties and potential applications in foods: a review. Inter J Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmic ro.2004.03. 022.
3.        Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of TurkishArtemisia absinthium, A. dracunculusArtemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem. 2005;53:9452–9458. doi: 10.1021/jf0516538. [PubMed]
4.        Sylvestre M, Pichette A, Longtin A, Nagau F, Legault J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol. 2006;103:99–102. doi: 10.1016/j.jep. 2005.07.011. [PubMed]
5.        Faid M, Bakhy K, Anchad M, Tantaoui-Elaraki A, Alomondpaste . Physicochemical and microbiological characterizations and preservation with sorbic acid and cinnamon. J Food Prod. 1995;58:547–550.
6.        Buttner, MP.;Willeke, K.; Grinshpun, SA. Sampling and analysis of airborne microorganisms. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV. , editor. Manual of Environmental Microbiology. ASM Press: Washington, DC; 1996. pp. 629–640.
7.        Van de Braak, SAAJ.; Leijten, GCJJ. Essential Oils and Oleoresins: A Survey in the Netherlands and other Major Markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam.1999. p. 116.
8.        Milhau G, Valentin A, Benoit F, Mallie M, Bastide J, Pelissier Y, Bessiere J. In vitro antimicrobial activity of eight essential oils. J Essent Oil Res. 1997;9:329–333.
9.        Darokar MP, Mathur A, Dwivedi S, Bhalla R, Khanuja SPS, Kumar S. Detection of antibacterial activity in the floral petals of some higher plants. Curr Sci. 1998;75:187.
10.     Ouattara B, Simard RE, Holley RA, Pitte GJP, Begin A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Inter J Food Microbiol. 1997;37:155–162. doi: 10.1016/S0168- 1605(97)00070- 6.
11.     Subash Babu, P.;Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde- A potential antidiabetic agent. Phytomed.
12.     Singh S, Majumdar DK. Effect of Ocimum sanctum fixed oil on vascular permeability and leucocytes migration. Indian J Exp Biol. 1999;37:1136–1138. [PubMed]
13.     Calabrese V, Randazzo SD, Catalano C, Rizza V. Biochemical studies on a novel antioxidant from lemon oil and its biotechnological application in cosmetic dermatology. Drugs Exp Clin Res. 1999;25:219–225. [PubMed]
14.     Aruoma OI, Spencer JP, Rossi R, Aeschbach R, Khan A, Mahmood N, Munoz A, Murcia A, Butler J, Halliwell B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem Toxicol.1996;34:449–456. doi: 10.1016/0278- 6915(96)00004- X. [PubMed]
15.     Kumar A, Samarth RM, Yasmeen S, Sharma A, Sugahara T, Terado T, Kimura H. Anticancer and radioprotective potentials of Mentha piperitaBiofactors. 2004;22:87–91. [PubMed]
16.     Arias BA, Ramon-Laca L. Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. J Ethnopharmacol. 2005;97:89–95. doi: 10.1016/j.jep. 2004.10.019. [PubMed]
17.     De Billerbeck VG, Roques CG, Bessiere JM, Fonvieille JL, Dargent R. Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger. Can J Microbiol. 2001;47:9–17. doi: 10.1139/cjm- 47-1-9. [PubMed]
18.     Cavanagh HM, Wilkinson JM. Biological activities of lavender essential oil. Phytother Res. 2002;16:301–308. doi: 10.1002/ptr. 1103. [PubMed]
19.     NCCLS (National Committee for Clinical Laboratory Standards). Approved Standard M100-S12. Wayne. PA, NCCLS; 2002. Methods for dilution antimicrobial susceptibility tests of bacteria that grow aerobically.
20.     Prudent D, Perineau F, Bessiere JM, Michel GM, Baccou JC. Analysis of the essential oil of wild oregano from Martinique (Coleus aromaticus Benth.) – evaluation of its bacterioatatic and fungistatic properties. J Essen Oil Res.1995;7:165–173.
21.     Delaquis PJ, Stanich K, Girard B, Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Inter J Food Microbiol. 2002;74:10–109.
22.     Jones FA. Herbs – useful plants. Their role in history and today. Euro J Gastroenterol Hepatol. 1996;8:1227–1231.
23.     Reynolds, JEF. Martindale – the Extra Pharmacopoeia. 31. London. Royal Pharmaceutical Society of Great Britain; 1996.
24.     Lis-Balchin M, Deans SG. Bioactivity of selected plant essential oils against Listeria monocytogenesJ Appl Bacteriol. 1997;82:759–762.
25.     Mitscher LA, Drake S, Gollapudi SR, Okwute SK. A modern look at folkloric use of anti-infective agents. J Nat Prod. 1987;50:1025–1040. doi: 10.1021/np50054a003 . [PubMed]
26.     Zaika LL. Spices and herbs: their antibacterial activity and its determination. J Food Saf. 1988;23:97–118.
27.     Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan V, Parker M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol. 2006;107:180–185. doi: 10.1016/j.ijfoodmic ro.2005.07. 007. [PubMed]
28.     Aureli P, Costantini A, Zolea S. Antibacterial activity of some plant essential oils against Listeria monocytogencesJ Food Prot. 1992;55:344–348.
29.     Cimanga KK, Kambu , Tona L, Apers S, De Bruyne T, Hermans N, Totte J, Pieters L, Vlietinck AJ. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol. 2002;79:213–20. doi: 10.1016/S0378- 8741(01)00384- 1. [PubMed]
30.     Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol Immunol. 2002;19:61–4. doi: 10.1046/j.0902- 0055.2003. 00111.x. [PubMed]
31.     Simic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res. 2004;18:713–717. doi: 10.1002/ptr. 1516. [PubMed]
32.     Baratta MT, Dorman HJ, Deans SG, Figueiredo AC, Barroso JG, Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flav Fragr J. 1998;13:235–244. doi: 10.1002/(SICI) 1099-1026( 1998070)13: 4<235::AID-FFJ733>3.0.CO;2-T.
33.     Blumenthal, M. The Complete Commission E Monographs, Therapeutic Guide Herbal Medicines. Boston, Mass: Integrative Medicine Communications; 1998. p. 110.
34.     Ali1 SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H, Venkateswar Rao L, Habibullah CM, Sechi LA, Ahmed N. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pyloriAnnals of Clinical Microbiology and Antimicrobials. 2005;4:20. doi: 10.1186/1476- 0711-4-20. [PubMed]
35.     Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol. 2006;104:119–123. doi: 10.1016/j.jep. 2005.08.059. [PubMed]
36.     Quale JM, Landman D, Zaman MM, Burney S, Sathe SS. In vitro activity of Cinnamomum zeylanicum against azole resistant and sensitive Candida species and a pilot study of cinnamon for oral candidiasis. Am J Chin Med.1996;24:103–109. doi: 10.1142/S0192415X96 000153. [PubMed]
37.     Nadkarni, KM. Indian Meteria Medica. Popular Prakashan, Bombay, India; 1976. pp. 228–231.
38.     Pawar VC, Thaker VS. In vitro efficacy of 75 essential oils against Aspergillus nigerMycoses. 2006;49:316–323. doi: 10.1111/j.1439- 0507.2006. 01241.x. [PubMed]
39.     Knobloch, K.;Weigand, H.;Weis, N.;Schwarm, H-M.; Vigenschow, H. Action of terpenoids on energy metabolism. In: Brunke EJ. , editor. Progress in Essential Oil Research: 16th International Symposium on Essential Oils. De Gruyter, Berlin; 1986. pp. 429–445.
40.     Sikkema J, De Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269:8022–8028. [PubMed]
41.     Denyer, SP.; Hugo, WB. Biocide-induced damage to the bacterial cytoplasmic membrane. In: Denyer SP, Hugo WB. , editor. Mechanisms of Action of Chemical Biocides. The Society for Applied Bacteriology, Technical Series No 27. Oxford Blackwell Scientific Publication, Oxford; 1991. pp. 171–188.
42.     Rastogi, RP.; Mehrotra, BN. Compendium of Indian medicinal plants. I–IV. Central Drug Research Institute, Lucknow, and National Institute of science communication, New Delhi, India; 1994.
43.     Rastogi, RP.; Mehrotra, BN. Glossary of Indian Medicinal Plants. National Institute of science communication, New Delhi, India; 2002.
 
Observação: O estudo abaixo foi realizado na ìndia sobre 21 óleos essenciais, como política de saúde pública voltada a infecções hospitalares e outras. Os óleos essenciais são apresentados como solução de baixo custo.


Maiores informações, consultorias, assessorias a clínicas e empresas e particulares (atendimentos para problemas de saúde em geral):
Alessandro Luiz Freire - Fitoaromatologista, Permacultor, Técnico em acupuntura, Raw Personal Diet Adviser
Contatos: (12) 82035180
 
Atendimentos online!  - à distância para todo o Brasil e exterior - inclusive em inglês e espanhol

0 Comentários:

Postar um comentário

Assinar Postar comentários [Atom]

<< Página inicial